
CORBAservices: Common Object Services Specification 5-1

Persistent Object Service Specification 5

5.1 Introduction

The goal of the Persistent Object Service (POS) is to provide common interfaces to the
mechanisms used for retaining and managing the persistent state of objects. The
Persistent Object Service will be used in conjunction with other object services, for
example, naming, relationships, transactions, life cycle, and so forth. The Persistent
Object Service has the primary responsibility for storing the persistent state of objects,
with other services providing other capabilities.

Figure 5-1 Roles in the Persistent Object Service

Client

Object

Persistent Object Service

Dynamic state

Persistent state

Object Reference

5-2 CORBAservices: Common Object Services Specification

5

Figure 5-1 shows the participants in the Persistent Object Service. The state of the
object can be considered in two parts, the dynamic state, which is typically in memory
and is not likely to exist for the whole lifetime of the object (for example, it would not
be preserved in the event of a system failure), and the persistent state, which the object
could use to reconstruct the dynamic state.

Although the ORB provides the ability for an object reference to be persistent, it
cannot ensure that the state of the object will be available just because the object
reference is still valid.

The object ultimately has the responsibility of managing its state, but can use or
delegate to the Persistent Object Service for the actual work. There is no requirement
that any object use any particular persistence mechanism. For example, it may write its
data to files using non-CORBA interfaces, or a single-level-store mechanism may be
used. However, the Persistent Object Service provides capabilities that should be
useful to a wide variety of objects.

Whether or not the client of an object is aware of the persistent state is a choice the
object has. CORBA already provides a persistent reference handling interface (i.e.,
object_to_string, string_to_object, release, etc.). We expect that this will be sufficient
for most clients to manage persistence of their referenced objects. But, because certain
kinds of flexibility require the client to manage reference objects’ persistence, the
Persistent Object Service defines object interfaces for doing so. If this flexibility is not
required, then these interfaces need not be supported or used.

The size, structure, access patterns and other properties of the dynamic and persistent
state of the object varies tremendously. For many objects, their primary semantics are
the efficient storage and access of its state for particular purposes. It is critical that the
Persistent Object Service be able to support greatly different styles of usage and
implementation in order to be useful to as many objects as possible.

As usual for object services, the primary task of this persistence specification is to
define the interfaces that are needed to use the Persistent Object Service, and the
conventions for how objects can work together using it.

The architecture of the Persistent Object Service defines multiple components and
interfaces. In a particular situation, different parts of the service may be used. In no
case does this specification assume the use of a particular implementation of a
component, and it is expected that different implementations of the components will in
fact work together.

Section 5.2 describes the overall goals and properties of the Persistent Object Service.
 Section 5.3 defines the components which compose it. Section 5.4 presents the
CosPersistencePID module which defines the Persistence Identifier (PID). Section 5.5
presents the CosPersistencePO module with interfaces borne by Persistent Objects, and
Section 5.6 presents the interface to the Persistent Object Manager (POM). Section 5.7
presents an overview of the Persistent Data Service (PDS) which interfaces both to the
Protocol which communicates between PO and PDS, and to the Datastore which
actually stores the data; following this, Section 5.8 defines the CosPersistencePDS
Module which defines base functionality inherited by every protocol. Three protocols
are presented in this specification although more are possible; the Direct Access

Persistent Object Service: v1.0 Goals and Properties March 1995 5-3

5

Protocol (PDS_DA) is described in Section 5.9 and its IDL module is presented in
Section 5.10. The ODMG-93 Protocol is described in Section 5.11. The Dynamic Data
Object (DDO) Protocol is described in Section 5.12, and its IDL module is presented
in Section 5.13. Other possible protocols are discussed briefly in Section 5.14. One
possible datastore, implementable using a number of database and file mechanisms, is
described in Section 5.15; other possible datastores are discussed in Section 5.16.
Finally, Section 5.18 lists outside works referenced in this chapter.

5.2 Goals and Properties

The Persistent Object Service plays a key role in structuring the object system. The
model of how many objects work is critically dependent on consistent and integrated
use of persistence. Like other object services, the Persistent Object Service provides
interfaces that can support different implementations in order to obtain different
qualities of service. Those interfaces allow different components to work together.

The overall persistence architecture has multiple components. Each will be introduced
in turn in this section, following presentation of some basic capabilities and properties
provided by the overall architecture.

5.2.1 Basic Capabilities

The principle requirement to be supported is the need for an object to be able to make
all or part of its state be persistent. Although the CORBA system defines object
references as persistent (that is, they are usable until they are released regardless of the
life time of their containing address space), it defined no particular way for the object
to make its state persistent. The Persistent Object Service is intended ultimately to be
the most common way to implement this. Therefore, there must be a way for the object
to decide what state needs to be made persistent, and ways to store and retrieve that
state.

It is often necessary to expose the persistent state from an object, so that the client can
control the object’s persistence to achieve certain types of flexibility. The Persistent
Object Service defines a convention for doing this. Clients of objects sometimes need
ways to refer to the persistent state, and request various operations on it. It is often not
necessary to expose the persistent state from an object, so that the object
implementation itself determines its persistence. In these cases, no persistence-specific
object interfaces need be supported.

5.2.2 Object-oriented Storage

In existing non-object-oriented systems, persistence is accomplished by a number of
data storage mechanisms. Generally, such mechanisms do not provide the key
properties that object systems provide—uniform interfaces, self-description, and
abstraction. The Persistent Object Service brings these properties to storage by
applying object technology and principles.

5-4 CORBAservices: Common Object Services Specification

5

Interfaces to Data

To manage object persistence, the POS defines an architecture with interfaces defined
using the CORBA IDL type system. Whether detailing the particular data to be stored,
describing the protocol for accessing the state, or defining the convention for making
state visible for client control, the same “language” is used. This makes persistence a
natural part of the software environment. These interfaces are designed to be used in a
wide variety of situations, creating uniformity by encouraging most objects to support
them, while allowing optimization and evolution.

By accessing data through an interface, many problems of data manipulation and
exchange can be avoided. For example, programs always see data in the representation
that is appropriate for the machine, programming language, etc., of the application.
Data can be translated as needed to facilitate use in different object types and
implementations and for different storage formats or underlying persistent storage
mechanisms (e.g. stream files, record files, or various databases) when it is accessed
through the interface.

Self-description

A powerful characteristic of object-oriented systems is that the elements are self-
describing. It is possible to determine from an object what kind of object it is and what
interfaces it supports. In the persistence architecture this means, for example, that a
client can determine whether or not an object wishes to make its persistent state visible
by checking to see if the object supports the interface for doing so.

It also means that the data can be manipulated to some degree independently of the
objects whose state they represent. This can allow generic facilities such as backup,
migration, storage accounting, etc., to be done independent of the objects whose state
is being stored.

Abstraction

In order to support a wide and evolving set of uses, a service must be able to improve
and replace its implementations without affecting the clients of that service. The desire
for reuse of objects requires that those objects not depend too strictly on other objects
and services, but rather be willing to work with any other components that support the
required interface.

A variety of value-added products are also possible assuming that the objects depend
only on the defined interfaces. By interposing unexpected implementations, for
example, it may be possible to support features such as replication or versioning in a
transparent way.

5.2.3 Open Architecture

A major feature of the Persistent Object Service (and the OMG architecture) is its
openness. In this case, that means that there can be a variety of different clients and
implementations of the Persistent Object Service, and they can work together. This is

Persistent Object Service: v1.0 Goals and Properties March 1995 5-5

5

particularly important for storage, where the mechanisms that are useful for documents
may not be appropriate for employee databases, or the mechanisms appropriate for
mobile computers may not be appropriate for mainframes.

Implementations can be lightweight, consisting of mostly library code, or powerful,
leveraging decades of experience with database systems. Of course, the architecture
specifies several interfaces, but also shows how new interfaces can be introduced when
needed while still exploiting the rest of the architecture.

As with other object services, the Persistent Object Service is intended to be part of a
collection of services. As a result, it does not attempt to solve all problems that might
relate to storage. Rather, it assumes other services will provide the solutions. For
example, the Persistent Object Service does not do naming, but assumes that the Name
Service will perform that function; it does not do transactions, but assumes that they
will be added as appropriate; it does not handle issues of general compound objects,
but assumes that there will be a scheme that spans persistence, lifecycle, printing and
other services.

A key idea in object systems that is critical for persistence is the ability for new and
existing storage services to be able to integrate into the architecture. The requirement
for such components to “plug and play” together is paramount, since one cannot expect
all data to be maintained in a particular kind of file or database system. Thus, the
architecture has features to allow existing databases or other storage mechanisms to be
used for persistence, and for new storage mechanisms to be developed that can support
both Persistent Object Service clients and other kinds of clients.

The POS architecture is open with respect to PersistentDataService, Datastore,
Protocol, and PID interfaces. Although we define some minimum requirements for
these in some cases, many alternatives are allowed, including ones that have not yet
been defined.

5.2.4 Views of Service

There are multiple views of the service, and each participant may need to consider only
a part of the architecture.

Client

It is common for clients of objects to need to control or to assist in managing
persistence. In particular, the timing of when the persistent state is preserved or
restored, and the identification of which persistent state is to be used for an object, are
two aspects often of interest to clients. The ability of a client to see the object and its
data separately allows different object implementations to be used with the same data
and allows different files or databases and formats to be used with the same object
implementation.

However, the client need only deal with such complexity when this type of
functionality is necessary. The client of the object can be completely ignorant of the
persistence mechanism, if the object chooses to hide it.

5-6 CORBAservices: Common Object Services Specification

5

The Persistent Object Service provides an interface for objects to use when they want
to expose their persistence to their clients. The interface does not completely abandon
encapsulation, but gives the client visibility to those functions it needs. In fact, the
client is generally unaware of how or if the object uses other parts of the Persistent
Object Service.

Object Implementation

The object has the most involvement with the persistence, and the most options in
deciding how to use it. Defining and manipulating the persistent state of the object is
often the most crucial part of its implementation. The first decision the object makes is
what interface to its data it needs. The Persistent Object Service captures that choice in
the selection of the Protocol used by the object. Some Protocols provide simple
interfaces and limited functionality, others may provide more control and more
powerful operations.

The object also has the choice of delegating the management of its persistent data to
other services, or maintaining fine-grained control over it. The Persistent Object
Service defines a Persistent Object Manager that handles much of the complexity of
establishing connections between objects and storage, allowing new components to be
introduced without affecting the objects or their clients.

The object may also provide the ability for its clients to manipulate its persistent state
in various ways. This is important for creating a uniform view of persistence in the
system.

Persistent Data Service

The Persistent Data Service (PDS) actually implements the mechanism for making data
persistent and manipulating it. A particular PDS supports a Protocol defining the way
data is moved in and out of the object, and an interface to an underlying Datastore.

The PDS has the responsibility of translating from the object world above it to the
storage world below it. It plays critical roles in identifying the storage as well as
providing convenient and efficient access to it.

We define multiple kinds of PDSs, each tuned to a particular protocol and data storage
mechanism, since the range of requirements for performance, cost, and qualitative
features is so large. Multiple PDSs must work together to create the impression of a
uniform persistence mechanism. The Persistent Object Manager provides the
framework for PDSs to cooperate this way.

Datastore

The lowest-level interface we define is a Datastore. Although Datastore interfaces are
the least visible part of the persistence architecture, it may be the most valuable, since
there are so many different Datastores offering a wide spectrum of tradeoffs between
availability, data integrity, resource consumption, performance and cost, and it is

Persistent Object Service: v1.0 Service Structure March 1995 5-7

5

expected that more will be created. By having an interface that is hidden from objects
and their clients, a Datastore can provide service to any and all objects that indirectly
use the Datastore interface.

The Datastore plays a key role in interoperating with other storage services. It is the
manifestation in the object world of the various means of storing data that are not
objects. Generally, standards for Datastore interfaces have already been defined for
different kinds of data repositories - relational, object-oriented, and file systems.

5.3 Service Structure

This section presents an overview of each of the major components and how they
interrelate. Subsequent sections present the OMG IDL as divided into modules which
correspond closely (but not exactly) to these components, as noted below.

The major components of the Persistent Object Service are illustrated in Figure 5-1 on
page 1. They are:

• Persistent Identifier (PID) - This describes the location of an object’s persistent data
in some Datastore and generates a string identifier for that data.

• Persistent Object (PO) - This is an object whose persistence is controlled externally
by its clients.

• Persistent Object Manager (POM) - This component provides a uniform interface
for the implementation of an object’s persistence operations. An object has a single
POM to which it routes its high-level persistence operations to achieve plug and
play.

• Persistent Data Service (PDS) - This component provides a uniform interface for
any combination of Datastore and Protocol, and coordinates the basic persistence
operations for a single object.

• Protocol - This component provides one of several ways to get data in and out of an
object.

• Datastore - This component provides one of several ways to store an object’s data
independently of the address space containing the object.

5-8 CORBAservices: Common Object Services Specification

5

Figure5-2 Major Components of the POS and their Interactions

The term “persistent object” is used to refer both to objects whose persistence is
controlled internally or externally. Either kind of persistent object can be supported by
the Persistent Object Service’s POM, PDS, Protocol and Datastore interfaces. The PO
interface supports externally controlled persistence.

5.4 The CosPersistencePID Module

The CosPersistencePID module contains the basic interface for retrieving a PID:

• The PID Interface

This section describes this interface, plus an example factory interface, and their
operations in detail.

Client

PersistentObjectManager

PersistentDataService

Datastore

Protocol

Persistent Object PO

PDS

POM

PID Persistent Identifier

Persistent Object Service: v1.0 The CosPersistencePID Module March 1995 5-9

5

The CosPersistencePID Module is shown in Figure 5-3: .

The PID identifies one or more locations within a Datastore that represent the
persistent data of an object and generates a string identifier for that data. An object
must have a PID in order to store its data persistently. The client can create a PID,
initialize its attributes, and connect it to the object. A persistent object’s
implementation uses the POM interface by passing the object and the PID as
parameters.

The PID should not be confused with the CORBA object reference (OID). They are
similar in that both have an operation that produces a string form that can be stored or
communicated in whatever ways strings may be manipulated and later used to get the
original PID or OID. They differ in that the PID identifies data while the OID
identifies a CORBA object.

For example, assume mySpreadSheet object is referenced by both myDoc and yourDoc
objects. If mySpreadSheet’s OID is stored persistently with myDoc and yourDoc and
then all three are brought into memory, then both documents will always see the same
spreadsheet object. If mySpreadSheet’s PID is stored persistently with myDoc and
yourDoc and then all three object are brought into memory, each document will see a
different spreadsheet object whose states will be the same initially but will diverge
over time.

5.4.1 PID Interface

The OMG IDL definition for the PID is as follows

The PID contains at least one attribute:

module CosPersistencePID {

interface PID {
attribute string datastore_type;
string get_PIDString();

};

};

Figure5-3 The CosPersistencePID Module

interface PID {
 attribute string datastore_type;

string get_PIDString();
 };

5-10 CORBAservices: Common Object Services Specification

5

attribute string datastore_type;
This identifies the interface of a Datastore. Example datastore_types
might be “DB2”, “PosixFS” and “ObjectStore”. The PDS hides the
Datastore’s interface from the client, the ppersistent object and the POM, but
PDS implementations are dependent on the Datastore’s interface.

Other attributes can be added via subtyping the PID base type to reflect more
specialized PIDs. Unless the datastore_type contains only a single object’s
persistent data, there is a need for more specific location information in the PID. The
following example PID subtypes illustrate this:

The PID provides a single operation:

string get_PIDString();
This operation returns a string version of the PID called the PIDString. A client
should only obtain the PIDString using the get_PIDString operation. This
allows the PID implementation to decide the form of the PIDString.

Some implementations may simply concatenate the PID attributes. Others may return a
more compact form specialized for specific Datastores or even databases within a
Datastore. Still others may return a universally unique identifier (UUID) that facilitates
movement of its persistent data either within a single Datastore or between Datastores.
A UUID-based PID might be implemented by overriding the get and set attribute
operations and the get_PIDString operation to bind and lookup the mapping between
UUID and location information in a special context in the Name Service. Using such a
UUID-based PID, when an object is moved, the new location would be changed by
setting the attributes to indicate the new location, and the PID would make the
modification in the Name Service. The PIDString would contain the UUID that does
not change when an object’s data is moved, so that references remain intact.

Some applications need to be able to restore an object given a PID but without
knowing which type or implementation to use. The PID can be subtyped to
accommodate this by adding the type or implementation as a PID attribute.

#include "CosPersistencePID.idl"

interface PID_DB : CosPersistencePID::PID {
attribute string database_name; // name of a database

};

interface PID_SQLDB : PID_DB {
attribute string sql_statement; // SQL statement

};

interface PID_OODB : PID_DB {
attribute string segment_name;// segment within database
attribute unsigned long oid; //object id within a segment

};

Persistent Object Service: v1.0 The CosPersistencePO Module March 1995 5-11

5

5.4.2 Example PIDFactory Interface

The OMG IDL definition for an example PIDFactory is as follows (others are also
possible):

This example PIDFactory provides three ways of creating a PID:

CosPersistencePID::PID create_PID_from_key(in string key);
This creates an instance of a PID given a key that identifies a particular PID
implementation.

CosPersistencePID::PID create_PID_from_string(in string pid_string);
This creates an instance of a PID given a PIDString. The PIDString must include
some way to identify a particular PID implementation (the PID’s key) in some
way that allows this operation to extract the PID’s key from the PIDString. This
key identifies the PID implementation for the newly created PID.

CosPersistencePID::PID create_PID_from_string_and_key(in string pid_string, in
string key);

This creates an instance of a PID whose implementation is identified by the key
in the input parameter instead of the key in the PIDString, and whose value is
determined by the PIDString. This is useful for when persistent data is moved
between Datastores that require different PID interfaces.

5.5 The CosPersistencePO Module

The CosPersistencePO Module collects the interfaces which are borne by a persistent
object to allow its clients and the POM to control the PO’s relationship with its
persistent data. This module includes two interfaces:

• The PO Interface

• The SD Interface

plus an example factory interface.

The PO interface is borne by the PO and used by the client. The SD interface is borne
by the PO and used by the POM.

This section describes these interfaces and their operations in detail.

interface PIDFactory {
CosPersistencePID::PID create_PID_from_key(in string key);
CosPersistencePID::PID create_PID_from_string(

in string pid_string);
CosPersistencePID::PID create_PID_from_string_and_key(

in string pid_string, in string key);
};

5-12 CORBAservices: Common Object Services Specification

5

The CosPersistencePO Module is shown in Figure 5-4::

5.5.1 The PO Interface

The PO interface provides two mechanisms for allowing a client to externally control
the PO’s relationship with its persistent data:

• Connection: This mechanism establishes a close relationship between the PO and its
Datastore where the two data representations can be viewed as one for the duration
of the connection. When the connection is ended, the data is the same in the PO and
the Datastore, and the relationship between them no longer exists. An object can
have only one connection at a time.

• Store/restore: These operations allow the client to move data between the PO and its
Datastore in each direction separately, with each movement in each direction
explicitly initiated by the client.

The PO interface operations allow client control of a single PO’s persistent data. When
one of these operations is performed on a PO, what data is included in these operations
is up to that PO’s implementation. For example, only part of the PO’s private data may
be included. Other POs may be included based on any criteria. If other POs are
included, the target PO’s implementation becomes their client and is responsible for
controlling their persistence.

A PO client is responsible for the following:

• Creating a PID for the PO and initializing the PID. For storage, whatever location
information is not specified will be determined by the Datastore. For a retrieval or
delete operation, the location information must be complete.

#include "CosPersistencePDS.idl"
// CosPersistencePDS.idl #includes CosPersistencePID.idl

module CosPersistencePO {

interface PO {
attribute CosPersistencePID::PID p;
CosPersistencePDS::PDS connect (

in CosPersistencePID::PID p);
void disconnect (in CosPersistencePID::PID p);
void store (in CosPersistencePID::PID p);
void restore (in CosPersistencePID::PID p);
void delete (in CosPersistencePID::PID p);

};

interface SD {
void pre_store();
void post_restore();

};
};

Figure5-4 TheCosPersistencePO Module

Persistent Object Service: v1.0 The CosPersistencePO Module March 1995 5-13

5

• Controlling the relationship between the data in the PO and the Datastore. This is
done by asking the PO to connect(), disconnect(), store(), restore() or delete() itself.

The OMG IDL definition for a PO is as follows:

The PO interface has the following operations:

CosPersistencePDS::PDS connect (in CosPersistencePID::PID p);
This begins a connection between the data in the PO and the Datastore location
indicated by the PID. The persistent state may be updated as operations are
performed on the object. This operation returns the PDS that handles persistence
for use by those Protocols that require the PO to call the PDS.

void disconnect (in CosPersistencePID::PID p);
This ends a connection between the data in the PO and the Datastore location
indicated by the PID. It is undefined whether or not the object is usable if not
connected to persistent state. The PID can be nil.

void store (in CosPersistencePID::PID p);
This copies the persistent data out of the object in memory and puts it in the
Datastore location indicated by the PID. The PID can be nil.

void restore (in CosPersistencePID::PID p);
This copies the object’s persistent data from the Datastore location indicated by
the PID and inserts it into the object in memory. The PID can be nil.

void delete (in CosPersistencePID::PID p);
This deletes the object’s persistent data from the Datastore location indicated by
the PID. The PID can be nil.

To adhere to the plug and play philosophy, objects pass these requests through to the
POM, so that the interface for PO parallels that of the POM. This delegation to the
POM allows objects to change PDSs (combination of Datastore and Protocol) without
changing their implementation.

interface PO {
attribute CosPersistencePID::PID p;
CosPersistencePDS::PDS connect (

in CosPersistencePID::PID p);
void disconnect (in CosPersistencePID::PID p);
void store (in CosPersistencePID::PID p);
void restore (in CosPersistencePID::PID p);
void delete (in CosPersistencePID::PID p);

};

5-14 CORBAservices: Common Object Services Specification

5

5.5.2 The POFactory Interface

The OMG IDL definition for an example POFactory is as follows (others are also
possible):

The example POFactory provides the following operation:

CosPersistencePO::PO create_PO(in CosPersistencePID::PID p, in string pom_id);
This creates an instance of a PO that knows which POM to use and with its pid
attribute already assigned.

5.5.3 The SD Interface

Some objects may be implemented knowing they are going to be persistent. Many such
objects have both transient and persistent data. The Synchronized Data (SD) Interface
is provided to allow such objects to synchronize their transient and persistent data.
Operations on the SD are invoked only by the POM. Persistent objects whose
persistence is controlled either internally or externally (PO) can support the SD
interface.

The OMG IDL definition for SD is as follows:

The interface for SD provides two operations:

void pre_store();
This ensures that the persistent data are synchronized with the transient data.

void post_restore();
This ensures that the transient data are synchronized with the persistent data.

A word processing document provides a good example of how these operations might
be implemented. Suppose the document type is implemented with the following data:

• text buffer (persistent)

#include "CosPersistencePO.idl"
// CosPersistencePO.idl #includes CosPersistencePDS.idl
// CosPersistencePDS.idl #includes CosPersistencePID.idl

interface POFactory {
CosPersistencePO::PO create_PO (

in CosPersistencePID::PID p,
in string pom_id);

};

interface SD {
void pre_store();
void post_restore();

};

Persistent Object Service: v1.0 The CosPersistencePOM Module March 1995 5-15

5

• attributes (persistent)

• text cache (transient)

• cursor location (transient)

The document could be implemented such that all work is done in the text cache. Then
at store time, the text buffer needs to be updated, since it contains the actual data that
will be stored. As such, the pre_store operation should be implemented such that any
updates in the text cache are propagated to the text buffer. The post_restore
operation should be implemented such that the text cache is inititialized with a state
consistent with the text buffer.

5.6 The CosPersistencePOM Module

The CosPersistencePOM module contains the interface which is borne by the POM and
used by the PO. It contains a single interface:

• The POM Interface

This section describes this interface and its operations in detail.

The CosPersistencePOM Module is shown in Figure 5-5:

Figure5-5 The CosPersistencePOM Module

#include "CosPersistencePDS.idl"
// CosPersistencePDS.idl #includes CosPersistencePID.idl

module CosPersistencePOM {

interface Object;
interface POM {

CosPersistencePDS::PDS connect (
in Object obj,
in CosPersistencePID::PID p);

void disconnect (
in Object obj,
in CosPersistencePID::PID p);

void store (
in Object obj,
in CosPersistencePID::PID p);

void restore (
in Object obj,
in CosPersistencePID::PID p);

void delete (
in Object obj,
in CosPersistencePID::PID p);

};
};

5-16 CORBAservices: Common Object Services Specification

5

Clients of a PO will see the operations of the POM interface indirectly through the PO
interface. The implementation of a persistent object with either externally or internally
controlled persistence can use the POM interface. The POM provides a uniform
interface across all PDSs, so different PDSs (combination of Datastore and Protocol)
can be used without changing the object’s implementation.

The OMG IDL definition of the POM is as follows:

The POM interface has the following operations:

CosPersistencePDS::PDS connect (in Object obj, in CosPersistencePID::PID p);
This begins a connection between data in the object and the Datastore location
indicated by the PID. The persistent state may be updated as operations are
performed on the object. This operation returns the PDS that is assigned the
object’s PID for use by those Protocols that require the PO to call the PDS.

void disconnect (in Object obj, in CosPersistencePID::PID p);
This ends a connection between the data in the object and the Datastore location
indicated by the PID. It is undefined whether or not the object is usable if not
connected to persistent state. The PID can be nil.

void store (in Object obj, in CosPersistencePID::PID p);
This gets the persistent data out of the object in memory and puts it in the
Datastore location indicated by the PID. The PID can be nil.

void restore (in Object obj, in CosPersistencePID::PID p);
This gets the object’s persistent data from the Datastore location indicated by
the PID and inserts it into the object in memory. The PID can be nil.

void delete (in Object obj, in CosPersistencePID::PID p);
This deletes the object’s persistent data from the Datastore location indicated by
the PID. The PID can be nil.

interface POM {
CosPersistencePDS::PDS connect (

in Object obj,
in CosPersistencePID::PID p);

void disconnect (
in Object obj,
in CosPersistencePID::PID p);

void store (
in Object obj,
in CosPersistencePID::PID p);

void restore (
in Object obj,
in CosPersistencePID::PID p);

void delete (
in Object obj,
in CosPersistencePID::PID p);

};

Persistent Object Service: v1.0 The CosPersistencePOM Module March 1995 5-17

5

The major function of the POM is to route requests to a PDS that can support the
combination of Protocol and Datastore needed by the persistent object. To do this, the
POM must know which PDSs are available and which Protocol and Datastore
combinations they support. There are several possible ways that this information can
be made available to a POM:

• How a Protocol is associated with an object. One possibility is for the client to set
the Protocol for that object. Another possibility is for the Protocol to be associated
with the object’s type or implementation.

• How a POM finds out the set of available PDSs and which Protocol (or object type)
and Datastores they support. One possibility is for the POM to find the information
in a configuration file or a registry. Another possibility is to provide an interface to
the POM for registering the information. The best or most natural technique may
depend on the environment.

Because there are multiple ways to accomplish the above and more experience is
needed to better understand whether there is a best way and what that might be, a POM
interface for registering this information in the POM is not specified at this time.

When the POM is asked to store an object, the following steps logically occur:

1. From the PID, the POM gets the datastore_type attribute.

2. Regardless of how the Protocol is associated with the object, the POM uses the
combination of Protocol and datastore_type to determine the PDS.

3. The POM passes the store request through to the PDS.

4. The PDS gets data from the object using a Protocol and stores the data in the
Datastore.

The routing function of the POM serves to shield the client from having to know the
details of how actual data storage/retrieval takes place. A client can change the
repository of an object by changing the PID. The change will result in routing the next
store/restore request to whatever the appropriate PDS is for the new Datastore.

Figure 5-6 illustrates an example of the routing logic for the storage of myDoc in a
DB2 database. This figure and the following example steps assume that, for this POM,
the Protocol is associated with object type:

1. The POM is asked to perform a store on myDoc with pid1.

2. The POM finds the datastore_type associated with pid1 (e.g., DB2).

3. The POM finds the object type of myDoc (e.g., document).

4. The POM determines that myDoc will use a particular PDS (e.g., pds1).

5. The POM routes the store/restore to pds1.

6. The PDS gets the persistent data using protocol1 and stores the data in the DB2
Datastore at pid1.

5-18 CORBAservices: Common Object Services Specification

5

Figure5-6 Example to illustrate POMFunctions

5.7 Persistent Data Service (PDS) Overview

The PDS implementation is responsible for the following:

• Interacting with the object to get data in and out of the object using a protocol.
Protocols are introduced in this section; three example protocols and a discussion of
additional protocols are presented in Section 5.9 through Section 5.14.

• Interacting with the Datastore to get data in and out of the object. Datastores are
introduced in this section, and an example datastore plus a discussion of
implementing additional datastores are presented in Section 5.15 and Section 5.16.

A PDS performs the work for moving data into and out of an object and moving data
into and out of a Datastore. There can be a wide variety of implementations of PDSs
which provide different performance, robustness, storage efficiency, storage format, or
other characteristics, and which are tuned to the size, structure, granularity, or other
properties of the object’s state.

Because the range of storage requirements is so large, there may be different ways in
which the object can best access its persistent data, and there may be different ways in
which the PDS can store that data. The way in which the object interacts with the PDS

POM

mySpreadSheetmyDoc

datastore_type=DB2
...

datastore_type=ObjectStore
...

pid1 pid2

pds2pds1

DB2 ObjectStore

protocol1
protocol2

pds3

FS

yourDoc

datastore_type=FS
...

pid1

protocol2

document,DB2 pds1
spreadSheet,ObjectStore pds2

document,FS pds3

PDS Registry
object_type,datastore_type PDS

Persistent Object Service: v1.0 The CosPersistencePDS Module March 1995 5-19

5

is called the Protocol. A Protocol may consist of calls from the object to the PDS, calls
from the PDS to the object, implicit operations implemented with hidden interfaces, or
some combination. The interaction might be explicit, for example, asking the object to
stream out its data, or implicit, for example, the object might be mapped into persistent
virtual memory. The Protocol is initiated when an object’s persistent state is stored,
restored, or connected; this may be initiated by a POM or by the object itself. What
happens after that depends on the particular Protocol. An object that uses a particular
Protocol can work with any PDS that supports that Protocol. There is no “standard”
protocol. This specification defines three Protocols: the Direct Attribute (DA) Protocol,
the ODMG Protocol, and the Dynamic Data Object (DDO) Protocol. A PDS might also
use a programming language-specific or runtime environment-specific or other
Protocol.

A PDS may use either a standard or a proprietary interface to its Datastore. A
Datastore might be a file, virtual memory, some kind of database, or anything that can
store information. This specification defines one Datastore interface that can be
implemented by a variety of databases (Section 5.15).

The PDS component interface is specified here as one module containing only the base
PDS interface, plus one additional module per protocol. Each protocol-specific module
inherits from the base module, augmenting the base functionality as needed.

5.8 The CosPersistencePDS Module

The CosPersistencePDS Module contains the base interface upon which protocol-
specific interfaces are built. It contains a single interface: the PDS Interface.

This section describes this interface and its operations in detail.

5-20 CORBAservices: Common Object Services Specification

5

The CosPersistencePDS module is shown in Figure 5-7. Some Protocols may require
specialization of the PDS interface. However, no matter what Protocol or Datastore is
used, a PDS always supports at least the following interface:

The exact semantics of the connect, disconnect, store, and restore operations depend on
the Protocol, since there may be other steps involved in the Protocol. In all four
operations, the persistent state is determined by the PID of the object.

PDS connect (in Object obj, in CosPersistencePID::PID p);
This connects the object to its persistent state, after disconnecting any previous
persistent state. The persistent state may be updated as operations are performed
on the object.

void disconnect (in Object obj, in CosPersistencePID::PID p);
This disconnects the object from the persistent state. It is undefined whether or
not the object is usable if not connected to persistent state.

void store (in Object obj, in CosPersistencePID::PID p);
This saves the object’s persistent state.

void restore (in Object obj, in CosPersistencePID::PID p);
This loads the object’s persistent state. The persistent state will not be modified
unless a store or other mutating operation is performed on the persistent state.

void delete (in Object obj, in CosPersistencePID::PID p);
This disconnects the object from its persistent state and deletes the object’s
persistent data from the Datastore location indicated by the PID.

#include "CosPersistencePID.idl"

module CosPersistencePDS {

interface Object;
interface PDS {

PDS connect (in Object obj,
in CosPersistencePID::PID p);

void disconnect (in Object obj,
in CosPersistencePID::PID p);

void store (in Object obj,
in CosPersistencePID::PID p);

void restore (in Object obj,
in CosPersistencePID::PID p);

void delete (in Object obj,
in CosPersistencePID::PID p);

};
};

Figure5-7 The CosPersistencePDS Module

Persistent Object Service: v1.0 The Direct Access (PDS_DA) Protocol March 1995 5-21

5

5.9 The Direct Access (PDS_DA) Protocol

The first protocol to be described here is the PDS_DA or Direct Access Protocol. The
Direct Access Protocol supports direct access to persistent data through typed
attributes organized in data objects that are defined in a Data Definition Language
(DDL). An object using this Protocol would represent its persistent data as one or more
interconnected data objects. For uniformity, the persistent data of an object is
described as a single data object; however, that data object might be the root of a graph
of data objects interconnected by stored data object references. If an object uses
multiple data objects, the object traverses the graph by following stored data object
references.

An object must define the types of the data objects it uses. Those types are specified in
DDL, which is a subset of the OMG Interface Definition Language (OMG IDL) in
which objects consist solely of attributes. The state of the data object is accessed using
the attribute access operations defined in CORBA in conjunction with the appropriate
programming language mapping.

Figure5-8 Direct Access Protocol Interfaces

The PDS_DA Protocol has two parts, as shown in Figure 5-8. When connected to a
PDS, the object (which is effectively the client of the PDS) has an object representing
the PDS which supports the PDS_DA interface. The object performs operations
defined in the PDS_DA interface to get references to the data objects in the PDS. The
persistent data is manipulated by performing operations using the data object
references to get and set attributes on the collection of data objects in the PDS.

5.10 The CosPersistencePDS_DA Module

The CosPersistencePDS_DA Module is a collection of interfaces which together define
the protocol. This module contains the following interfaces:

• The PID_DA Interface

Object (Client of PDS)

PDS_DA

data objects

i=1
j=4

i=3 x=1
A B x=5

x=0
y=7
z=9

Data Object References PDS Object Reference

5-22 CORBAservices: Common Object Services Specification

5

• The DAObject Interface

• The DAObjectFactory Interface

• The DAObjectFactoryFinder Interface

• The PDS_DA Interface

• The DynamicAttributeAccess Interface

• The PDSClustered_DA Interface

This section describes these interfaces and their operations in detail.

The CosPersistencePDS_DA Module is shown in Figure 5-9: :

#include "CosPersistencePDS.idl"
// CosPersistencePDS.idl #includes CosPersistencePID.idl

module CosPersistencePDS_DA {

typedef string DAObjectID;

interface PID_DA : CosPersistencePID::PID {
attribute DAObjectID oid;

};

interface DAObject {
boolean dado_same(in DAObject d);
DAObjectID dado_oid();
PID_DA dado_pid();
void dado_remove();
void dado_free();

};

interface DAObjectFactory {
DAObject create();

};

interface DAObjectFactoryFinder {
DAObjectFactory find_factory(in string key);

};

interface PDS_DA : CosPersistencePDS::PDS {
DAObject get_data();
void set_data(in DAObject new_data);
DAObject lookup(in DAObjectID id);
PID_DA get_pid();
PID_DA get_object_pid(in DAObject dao);
DAObjectFactoryFinder data_factories();

};

Figure5-9 The CosPersistencePDS_DA Module

Persistent Object Service: v1.0 The CosPersistencePDS_DA Module March 1995 5-23

5

5.10.1 The PID_DA Interface

The Persistent Identifiers (PIDs) used by the PDS_DA contain an object identifier that
is local to the particular PDS. This value may be accessed with the following extension
to the CosPersistencePID interface:

The DAObjectID has the following attribute:

attribute DAObjectID oid();
This returns the data object identifier used by this PDS for the data object
specified by the PID.The DAObjectID type is defined as an unbounded sequence
of bytes that may be vendor-dependent.

typedef sequence<string> AttributeNames;
interface DynamicAttributeAccess {

AttributeNames attribute_names();
any attribute_get(in string name);
void attribute_set(in string name, in any value);

};

typedef string ClusterID;
typedef sequence<ClusterID> ClusterIDs;
interface PDS_ClusteredDA : PDS_DA{

ClusterID cluster_id();
string cluster_kind();
ClusterIDs clusters_of();
PDS_ClusteredDA create_cluster(in string kind);
PDS_ClusteredDA open_cluster(in ClusterID cluster);
PDS_ClusteredDA copy_cluster(

in PDS_DA source);
};

};

interface PID_DA : CosPersistencePID::PID {
attribute DAObjectID oid;

};

Figure5-9 The CosPersistencePDS_DA Module

5-24 CORBAservices: Common Object Services Specification

5

5.10.2 The Generic DAObject Interface

The DAObject interface defined below provides operations that many data object
clients need. A Datastore implementation may provide support for these operations
automatically for its data objects. A data object is not required to support this interface.
A client can obtain access to these operations by narrowing a data object reference to
the DAObject interface:

The DAObject has the following operations:

boolean dado_same(in DAObject d);
This returns true if the target data object and the parameter data object are the
same data object. This operation can be used to test data object references for
identity.

DataObjectID dado_oid();
This returns the object identifier for the data object. The scope of data object
identifiers is implementation-specific, but is not guaranteed to be global.

PID_DA dado_pid();
This returns a PID_DA for the data object.

void dado_remove();
This deletes the object from the persistent store and deletes the in-memory data
object.

void dado_free();
This informs the PDS that the data object is not required for the time being, and
the PDS may move it back to persistent store. The data object must be preserved
and must be brought back the next time it is referenced. This operation is only a
hint and is provided to improve performance and resource usage.

5.10.3 The DAObjectFactory Interface

The scheme for factories is consistent with that of the Life Cycle Service. The factory
supports the following interface:

interface DAObject {
boolean dado_same(in DAObject d);
DAObjectID dado_oid();
PID_DA dado_pid();
void dado_remove();
void dado_free();

};

interface DAObjectFactory {
DAObject create();

};

Persistent Object Service: v1.0 The CosPersistencePDS_DA Module March 1995 5-25

5

The DAObjectFactory has the following operation:

DAObjectFactory create();
creates a new data object in the PDS.

5.10.4 The DAObjectFactoryFinder Interface

This scheme for factories follows the Life Cycle Services specification. The factory
finder supports the following interface:

The DAObjectFactoryFinder has the following operation:

DAObjectFactoryFinder find_factory(in string key);
This finds a factory for data objects as specified by the key.

5.10.5 The PDS_DA Interface

The DA Protocol uses an extended PDS interface called PDS_DA:

The PDS_DA provides the following operations:

DAObject get_data();
This returns the single root data object of the PDS.

void set_data(in DAObject new_data);
This sets the single root data object

DAObject lookup(in DAObjectID id);
This finds a data object by object id.

PID_DA get_pid();
This constructs a PID that corresponds to the single root data object of this PDS.

PID_DA get_object_pid(in DAObject dao);
This constructs a PID that corresponds to the specified data object, which must
be in this PDS.

interface DAObjectFactoryFinder {
DAObjectFactory find_factory(in string key);

};

interface PDS_DA : CosPersistencePDS::PDS {
DAObject get_data();
void set_data(in DAObject new_data);
DAObject lookup(in DAObjectID id);
PID_DA get_pid();
PID_DA get_object_pid(in DAObject dao);
DAObjectFactoryFinder data_factories();

};

5-26 CORBAservices: Common Object Services Specification

5

DAObjectFactoryFinder data_factories();
This returns a factory finder. The factory finder will provide factories for the
creation of new data objects within the PDS.

5.10.6 Defining and Using DA Data Objects

A PDS_DA implements data objects that have a set of attributes defined in a Data
Definition Language (DDL). DDL is a subset of OMG IDL. In DDL, all interfaces
consist only of attributes; that is, there are no operations. The programming interface
for accessing the persistent state is the CORBA-defined attribute access operations as
specified in the particular programming language mapping. A PDS_DA implements
those accessor operations and transfers the persistent state between the Datastore and
data objects as necessary.

DA data objects are used like normal CORBA objects. They are manipulated using
object references, sometimes called “data object references”. Language mappings to
data object interfaces are generated just like language mappings for other interfaces.

To define a DA data object (DADO), the developer decides what state must be made
persistent. For example, suppose the object’s persistent data consists of two values, one
integer and one floating point number. The developer would define a data object
interface MyDataObject describing this data:

The DDL definition must be compiled, installed and linked with the object
implementation as necessary for the particular PDS and CORBA environment.
Mechanisms similar to those for creating stubs for IDL interfaces are used to provide
the callable routines and create the runtime information necessary for the PDS
implementation. The precise mechanisms are not defined in this specification.

interface MyDataObject {
attribute short my_short;
attribute float my_float;

};

Persistent Object Service: v1.0 The CosPersistencePDS_DA Module March 1995 5-27

5

Once the object has been connected to the PDS, the factory operations described above
are used to create the data object and set it as the root object in the PDS. The object
gets or sets values for the attributes using the CORBA accessor operations, for
example:

The DA Protocol allows developers to build simple object implementations that just
read and write attribute values whenever they need to. There is no need for an object to
cache persistent data in its transient store or to explicitly request it to be read or
written.

Attributes can be defined using the full flexibility of the DDL type system. A
particular PDS may restrict the attribute types it supports.

A data object may contain object references to other data objects and to ordinary
CORBA objects. Here is an example that extends the previous example by adding a
data object reference attribute and an ordinary CORBA object reference:

// PDS_DA Examples
// C++ code
// Include IDL compiler output from CosPersistencePDS_DA.idl
#include "CosPersistencePDS_DA.xh"
// CosPersistencePDS_DA.idl #includes CosPersistencePDS.idl
// CosPersistencePDS.idl #includes CosPersistencePID.idl
// connect to PDS
CosPersistencePDS_DA::PDS_DA my_pds =

pom->connect(my_object,my_PID);
// get factory finder
DAObjectFactoryFinder daoff = my_pds->data_factories();
// get factory for MyDataObject
DAObjectFactory my_factory =

daoff->find_factory(“MyDataObject”);
// create an instance of MyDataObject
MyDataObjectRef my_obj = my_factory->create();
// set the object to be the root object
my_pds->set_data(my_obj);
// put persistent state in attributes
my_obj->my_short(42);
my_obj->my_float(3.14159);
// use persistent state
my_obj->my_short(my_obj->my_short()+12);

interface MyDataObject {
attribute short my_short;
attribute float my_float;
attribute MyDataObject next_data;
attribute SomeOtherObject my_object_ref;

};

5-28 CORBAservices: Common Object Services Specification

5

This example allows an instance of MyDataObject to refer to another instance. A
Datastore implementation might restrict the scope of stored data object references. For
example, it might permit only references to data objects in the same Datastore.

DDL interfaces support inheritance with semantics identical to IDL. In the following
example, a new type of data object is defined that has all the attributes of
MyDataObject, plus an additional integer:

Like other CORBA objects, data objects support operations on object references. In
particular, the get_interface operation, which returns an interface repository reference
to the object’s most derived interface, is useful for dynamically determining the type of
a data object.

5.10.7 The DynamicAttributeAccess Interface

Because data objects are CORBA objects, the CORBA Dynamic Invocation Interface
can be used to get and set data object attributes dynamically, using strings to identify
attributes at run time. However, to simplify dynamic access to data object attributes,
the DynamicAttributeAccess interface is defined. This interface defines operations that
allow determination of the names of the attributes of a data object and getting and
setting individual attribute values by name. A data object is not required to support this
interface. It can be determined whether or not a data object supports these operations
by narrowing a data object reference to the DynamicAttributeAccess interface.

AttributeNames attribute_names();
This returns a sequence containing the names of the object’s attributes.

any attribute_get(in string name);
This returns the value of the specified attribute.

void attribute_set(in string name, in any value);
This sets the value of the named attribute to the value specified by the any
parameter.

interface DerivedObject : MyDataObject {
attribute short my_extra;

};

typedef sequence<string> AttributeNames;
interface DynamicAttributeAccess {

AttributeNames attribute_names();
any attribute_get(in string name);
void attribute_set(in string name, in any value);

};

Persistent Object Service: v1.0 The CosPersistencePDS_DA Module March 1995 5-29

5

5.10.8 The PDS_ClusteredDA Interface

It is often useful to group data objects together within a PDS. Common reasons include
locking, sharing, performance, etc. The PDS_ClusteredDA is an extension to the
PDS_DA. A non-clustered PDS_DA is effectively a single cluster.

Each cluster is represented as a distinct instance of the PDS_ClusteredDA interface,
although they will typically all be implemented by the same service using the same
Datastore.

In addition to supporting the normal PDS_DA interface, a Clustered PDS_DA has the
following interface:

ClusterID cluster_id();
This returns the id of this cluster.

string cluster_kind();
This returns the kind of this cluster.

ClusterIDs clusters_of();
This returns a sequence of ClusterIDs listing all of the clusters in this Datastore.

PDS_ClusteredDA create_cluster(in string kind);
This creates a new cluster of the specified kind in this Datastore and returns a
PDS_ClusteredDA instance to represent it.

PDS_ClusteredDA open_cluster(in ClusterID cluster);
This opens an existing cluster that has the specified ClusterID.

PDS_ClusteredDA copy_cluster(in PDS_DA source);
creates a new cluster, loading its state from the specified cluster, which may be
implemented in a different Datastore.

typedef string ClusterID;
typedef sequence<ClusterID> ClusterIDs;
interface PDS_ClusteredDA : PDS_DA {

ClusterID cluster_id();
string cluster_kind();
ClusterIDs clusters_of();
PDS_ClusteredDA create_cluster(in string kind);
PDS_ClusteredDA open_cluster(in ClusterID cluster);
PDS_ClusteredDA copy_cluster(

in PDS_DA source);
};

5-30 CORBAservices: Common Object Services Specification

5

5.11 The ODMG-93 Protocol

A group of Object-Oriented Database Management System (ODBMS) vendors has
recently endorsed and published a common ODBMS specification called ODMG-93.
That specification defines an extended version of IDL for defining ODBMS object
types as well as programming language interfaces for object manipulation.

The ODMG-93 Protocol is similar to the DA Protocol, in that the object accesses
attributes organized as data objects. The primary difference is that the ODMG-93
Protocol uses the Object Definition Language (ODL) defined in ODMG-93 instead of
DDL, and it uses the programming language mapping defined for data objects
specified in ODMG-93, rather than the CORBA IDL attribute operations.

If the ODMG-93 database object inherits the PDS_DA interface, then the database
object can be used with the rest of this specification. Objects using the ODMG-93
Protocol would manipulate persistent data using the interfaces specified in ODMG-93.

Note that in addition to using the ODMG-93 interface as another protocol, it would be
straightforward to implement the DA Protocol using an ODMG-93 ODBMS as a PDS.
Since the DA Protocol is a subset of the functionality in ODMG-93, in most
programming languages the language mapping for the DDL attributes would be a
trivial layer on the ODMG-93 mapping. Using the ODMG-93 Protocol would fully
exploit the capabilities of ODMG-93; using an ODMG-93 ODBMS to implement the
DA Protocol captures those objects that use DA Protocol.

5.12 The Dynamic Data Object (DDO) Protocol

The DDO is a Datastore-neutral representation of an object’s persistent data. Its
purpose is to contain all of the data for a single object. Figure 5-1 illustrates an
example of a DDO. A DDO has a single PID, object_type and set of data items whose
cardinality is data_count. Each piece of data has a data_name, data_value and a set of
properties whose cardinality is property_count. Each property has a property_name and
a property value.

Although any data can be stored in a DDO, the following example illustrates how it
might map onto a row in a table:

• a DDO = a row

• data_count = number of rows

• data_item = column

• data_name = column name

• data_value = column value

• property_count = number of column properties

• property_name = e.g., type or size

• property_value = e.g., character or 255

Persistent Object Service: v1.0 The CosPersistenceDDO Module March 1995 5-31

5

Figure5-10 Structure of a DDO

A DDO provides a Protocol when the persistent object supports the DDO interface. In
this case, the DDO interface is used to get data in and out of the persistent object. It
may even provide the way that the persistent object stores its internal data, in which
case a copy and reformat step is avoided.

To facilitate fast and simple storage and retrieval in specialized types of Datastore,
DDOs can be used with particular conventions that are more suitable to different types
of Datastore. If the DDO is used for both a Protocol and as a direct way to get data in
and out of a Datastore, then copy and format costs are greatly reduced.

5.13 The CosPersistenceDDO Module

The CosPersistenceDDO module contains the OMG IDL to support the DDO protocol.
The module contains oneinterface, the DDO interface.

This section describes the CosPersistenceDDO module in detail.

The CosPersistenceDDO Module is shown in Figure 5-11.

PID object_typedata_count=2

data_id=1

property_count=2

a data item

property_id=1

property_value=any

a property

data_name=”” data_value=any

property_name=””

property_id=2

property_value=any

a property

property_name=””

data_id=2

property_count=1

a data item

property_id=1

property_value=any

a property

data_name=”” data_value=any

property_name=””

a DDO

5-32 CORBAservices: Common Object Services Specification

5

A DDO has two attributes:

attribute string object_type;
This identify the object_type that this DDO is associated with.

attribute CosPersistencePID::PID p;
This identify the PID of the DDO.

A DDO has the following operations for getting data in and out of the DDO:

short add_data();
This adds a new data item and returns a new data_id that can be used to access
it.

short add_data_property (in short data_id);
This adds a new property within the data item identified by data_id and returns
the new property_id that can be used to access it within the context of the data
item.

short get_data_count();
This gets the number of data items in the DDO.

#include "CosPersistencePID.idl"

module CosPersistenceDDO {

interface DDO {
attribute string object_type;
attribute CosPersistencePID::PID p;
short add_data();
short add_data_property (in short data_id);
short get_data_count();
short get_data_property_count (in short data_id);
void get_data_property (in short data_id,

in short property_id,
out string property_name,
out any property_value);

void set_data_property (in short data_id,
in short property_id,
in string property_name,
in any property_value);

void get_data (in short data_id,
out string data_name,
out any data_value);

void set_data (in short data_id,
in string data_name,
in any data_value);

};
};

Figure5-11 The CosPersistenceDDO Module

Persistent Object Service: v1.0 Other Protocols March 1995 5-33

5

short get_data_property_count (in short data_id);
This gets the number of properties associated with the data item identified by
data_id.

void get_data_property (in short data_id,
in short property_id,
out string property_name,
out any property_value);

This gets the name and value of the property identified by property_id within the
data item identified by data_id.

void set_data_property (in short data_id,
in short property_id,
in string property_name,
in any property_value);

This sets the name and value of the property identified by property_id within the
data item identified by data_id.

void get_data (in short data_id,
out string data_name,
out any data_value);

This gets the name and value of the data item identified by data_id.

void set_data (in short data_id,
in string data_name,
in any data_value);

This sets the name and value of the data item identified by data_id.

5.14 Other Protocols

This specification includes three protocols, but other protocols can be supported in this
architecture. The proliferation of protocols would reduce the commonality of different
objects, so it is desirable to use an existing protocol if that is possible. However, when
a new protocol is required, it is still possible to use other parts of the Persistent Object
Service with it. In general, the protocol should be independent of the Datastore
interface, although some Datastore interfaces will be better suited to some protocols.

Some protocols are already defined and are not specified here. Such standard interfaces
as POSIX files are already in wide use, and there is no need to respecify them. In this
case, the PID would include the file name, and the protocol would consist of reads and
writes.

Other protocols are intended to be value-added and non-standard. For example, a
LISP-specific PDS might take advantage of knowledge of the LISP runtime
environment to create the appearance of a single-level store of LISP objects. Although
such a PDS would not be usable from other programming languages, it could provide
significant value to LISP programmers. Of course, it is also possible for a particular
value-added protocol to be implemented as a layer on a standard Protocol.

This specification allows such protocols to be integrated in the overall POS
architecture without changing that architecture.

5-34 CORBAservices: Common Object Services Specification

5

5.15 Datastores: CosPersistenceDS_CLI Module

The last major component in the architecture is a DataStore, which provides operations
on a data repository underneath the Protocols just discussed. As with Protocols, a
variety of DataStore interfaces may be defined. There is no “standard” DataStore
interface. Only one kind of DataStore is defined here, for record-oriented databases,
because other standard interfaces already exist at this level and many customers may
choose to omit this level of the architecture altogether for performance in an object-
oriented database by using the DA or ODMG Protocol directly on the DBMS.

Datastore_CLI provides a uniform interface for accessing many different Datastores
either individually or simultaneously. The acronym CLI refers to the X/Open Data
Management Call Level Interface on which the module is based. Datastore_CLI is
especially suited for record database and file systems (e.g., relational, IMS,
hierarchical databases, and VSAM file systems) that support user sessions,
connections, transactions, and scanning through data items using cursors.

The specification of this framework, where appropriate, is consistent with the X/Open
CLI, IDAPI, and ODBC standards. These are industry standards which specify
procedure-oriented application programming interfaces for accessing data stored in any
type of Datastore.

More detailed explanations and enumeration of the options in the Datastore_CLI
operations can be found in the X/Open CLI Specification.

DDOs are used as the way data are passed into the Datastore_CLI interface. If DDO is
also being used as the Protocol, the PDS can use this DDO directly as a parameter to
calls to the Datastore_CLI. When a different Protocol is being used, the PDS must
create a new DO and populate it with data prior to calling the Datastore_CLI.

The CosPersistenceDS_CLI module contains the interfaces derived from ODBC and
IDAPI, providing cursors into relational and other databases. The module contains the
following interfaces:

• The UserEnvironment Interface

• The Connection Interface

• The ConnectionFactory Interface

• The Cursor Interface

• The CursorFactory Interface

• The PID_CLI Interface

• The Datastore_CLI Interface

This section describes these interfaces and their operations in detail.

Persistent Object Service: v1.0 Datastores: CosPersistenceDS_CLI Module March 1995 5-35

5

The CosPersistenceDS_CLI Module is shown in Figure 5-12:

#include "CosPersistenceDDO.idl"
// CosPersistenceDDO.idl #includes CosPersistencePID.idl

module CosPersistenceDS_CLI {
interface UserEnvironment {

void set_option (in long option,in any value);
void get_option (in long option,out any value);
void release();

};

interface Connection {
void set_option (in long option,in any value);
void get_option (in long option,out any value);

};

interface ConnectionFactory {
Connection create_object (

in UserEnvironment user_envir);
};

interface Cursor {
void set_position (in long position,in any value);
CosPersistenceDDO::DDO fetch_object();

};

interface CursorFactory {
Cursor create_object (

in Connection connection);
};

 interface PID_CLI : CosPersistencePID::PID {
attribute string datastore_id;
attribute string id;

};

Figure5-12 The CosPersistenceDS_CLI Module

5-36 CORBAservices: Common Object Services Specification

5

5.15.1 The UserEnvironment Interface

The UserEnvironment OMG IDL is as follows:

interface Datastore_CLI {
void connect (in Connection connection,

in string datastore_id,
in string user_name,
in string authentication);

void disconnect (in Connection connection);
Connection get_connection (

in string datastore_id,
in string user_name);

void add_object (in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void delete_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void update_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void retrieve_object(
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

Cursor select_object(
in Connection connection,
in string key);

void transact (in UserEnvironment user_envir,
in short completion_type);

void assign_PID (in PID_CLI p);
void assign_PID_relative (

in PID_CLI source_pid,
in PID_CLI target_pid);

boolean is_identical_PID (
in PID_CLI pid_1,
in PID_CLI pid_2);

string get_object_type (in PID_CLI p);
void register_mapping_schema (in string schema_file);
Cursor execute (in Connection connection,

in string command);
};

};

interface UserEnvironment {
void set_option (in long option,in any value);
void get_option (in long option,out any value);
void release();

};

Figure5-12 The CosPersistenceDS_CLI Module

Persistent Object Service: v1.0 Datastores: CosPersistenceDS_CLI Module March 1995 5-37

5

The UserEnvironment has the following operations:

void set_option (in long option, in any value);
This sets the option to the desired value. The list of settable options is specified
in the X/Open CLI Specification and the IDAPI Specification.

void get_option (in long option, out any value);
This gets the value of the option. The list of gettable options is the same as that
for set_option().

void release();
This releases all resources associated with the UserEnvironment.

5.15.2 The Connection Interface

The Connection OMG IDL is as follows:

The Connection interface contains the following operations:

void set_option (in long option,in any value);
This sets the option to the desired value. The list of settable options is specified
in the IDAPI Specification.

void get_option (in long option, out any value);
This gets the value of the option. The list of gettable options is the same as that
for set_option.

5.15.3 The ConnectionFactory Interface

The ConnectionFactory OMG IDL is as follows:

The ConnectionFactory has the following operation:

 Connection create_object (
 in UserEnvironment user_envir);

This creates an instance of Connection. A Connection is created within the
context of a single UserEnvironment.

interface Connection {
void set_option (in long option,in any value);
void get_option (in long option,out any value);

};

interface ConnectionFactory {
Connection create_object (

in UserEnvironment user_envir);
};

5-38 CORBAservices: Common Object Services Specification

5

5.15.4 The Cursor Interface

The Cursor OMG IDL is as follows:

A cursor is a movable pointer into a list of DDOs, through which a client can move
about the list or fetch a DDO from the list. The Cursor has the following operations:

void set_position (in long position, in any value);
This sets the Cursor position to the desired value. The list of settable positions is
specified in the IDAPI Specification.

CosPersistenceDDO::DDO fetch_object();
This fetches the next DDO from the list, based on the current position of the
Cursor.

5.15.5 The CursorFactory Interface

The CursorFactory OMG IDL is as follows:

The CursorFactory has the following operations:

Cursor create_object (in Connection connection);
This create an instance of Cursor. A Cursor is created within the context of a
single Connection. See the X/Open CLI Specification and IDAPI Specification
for more information.

5.15.6 The PID_CLI Interface

The PID_CLI IDL is as follows:

interface Cursor {
void set_position (in long position,in any value);
CosPersistenceDDO::DDO fetch_object();

};

interface CursorFactory {
Cursor create_object (

in Connection connection);
};

interface PID_CLI : CosPersistencePID::PID {
attribute string datastore_id;
attribute string id;

};

Persistent Object Service: v1.0 Datastores: CosPersistenceDS_CLI Module March 1995 5-39

5

PID_CLI subtypes the PID base type (see Section 5.4.1), adding attributes required for
the Datatstore_CLI interface. The PID_CLI interface has the following attributes:

attribute string datastore_id;
This identifies the specific datastore in use. Most datastore products support
multiple datastores. For a relational database, this might be the name of a
particular database containing multiple tables. For a Posix file system, this
might be the pathname of a file.

attribute string id;
This identifies a particular data element within a datastore. For a relational
database, this might be a table name and primary key indicating a particular row
in a table. For a Posix file system, this might be a logical offset within the file
indicating where the data starts.

5-40 CORBAservices: Common Object Services Specification

5

5.15.7 The Datastore_CLI Interface

The Datastore_CLI OMG IDL is as follows:

In general, a client goes through the following steps to store, restore or delete DDOs:

1. Create a UserEnvironment and set the appropriate options to their desired values.

2. Create a Connection and set the appropriate options to their desired values. Open a
connection to the Datastore, via connect().

3. To store a DDO, call add_object() or update_object(). To restore a DDO, call
retrieve_object(). To delete a DDO, call delete_object().

4. If necessary, call transact() to commit or abort a Datastore transaction.

interface Datastore_CLI {
void connect (in Connection connection,

in string datastore_id,
in string user_name,
in string authentication);

void disconnect (in Connection connection);
Connection get_connection (

in string datastore_id,
in string user_name);

void add_object (in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void delete_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void update_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void retrieve_object(
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

Cursor select_object(
in Connection connection,
in string key);

void transact (in UserEnvironment user_envir,
in short completion_type);

void assign_PID (in PID_CLI p);
void assign_PID_relative (

in PID_CLI source_pid,
in PID_CLI target_pid);

boolean is_identical_PID (
in PID_CLI pid_1,
in PID_CLI pid_2);

string get_object_type (in PID_CLI p);
void register_mapping_schema (in string schema_file);
Cursor execute (in Connection connection,

in string command);
};

Persistent Object Service: v1.0 Datastores: CosPersistenceDS_CLI Module March 1995 5-41

5

5. Repeat steps 3 and 4 as necessary.

6. Close the connection to the Datastore, via disconnect(). Delete the corresponding
Connection.

7. Delete the UserEnvironment.

The Datastore_CLI connection operations are:

 void connect (in Connection connection,
 in string datastore_id,
 in string user_name,
 in string authentication);

This opens a connection to the Datastore using the Connection. A client can
establish more than one connection, but only one connection can be current at a
time. The connection that connect() establishes becomes the current connection.

void disconnect (in Connection connection);
This closes the Connection.

Connection get_connection (
in string datastore_id,
in string user_name);

This returns the Connection associated with the datastore_id.

When any of the data manipulation operations is called, a datastore transaction begins
implicitly if the Connection involved is not already active. A Connection becomes
active once the transaction begins and remains active until transact() is called.

The Datastore_CLI data manipulation operations are:

 void add_object (in Connection connection,
in CosPersistenceDDO::DDO data_obj);

This adds the DDO to the Datastore. If necessary, get the mapping schema
information for the DDO first.

 void delete_object (in Connection connection,
 in CosPersistenceDDO::DDO data_obj);

This deletes the DDO from the Datastore. If necessary, get the mapping schema
information for the DDO first.

void update_object (in Connection connection,
 in CosPersistenceDDO::DDO data_obj);

This updates the DDO in the Datastore. If necessary, get the mapping schema
information for the DDO first.

void retrieve_object (in Connection connection,
 in CosPersistenceDDO::DDO data_obj);

This retrieves the DDO from the Datastore. If necessary, get the mapping
schema information for the DDO first. To improve performance, the
DBDatastore_CLI may obtain access to more than one DDO at a time and cache
these.

Cursor select_object (in Connection connection,

5-42 CORBAservices: Common Object Services Specification

5

in string key);
This selects and retrieve the DDO(s) which match the key from the Datastore.
The DDO(s) are returned through the Cursor. If necessary, get the mapping
schema information for the key first. This operation is provided to support the
Query Service. In addition, the Datastore_CLI will support any other operation
required by the Object Query Service.

The Datastore_CLI functions as a resource manager for the DDOs that it manages. As
such, it will support all resource manager operations specified by the Transaction
Service. When the Transaction Service is not being used, a transaction is initiated
implicitly by either a Connection or a transact(), and ended with a transact():

void transact (in UserEnvironment user_envir,
 in short completion_type);

This completes (commit or rollback) a Datastore transaction. Transaction
completion enacts or undoes any add_object(), update_object() or
delete_object() operations performed on any Connection within the
UserEnvironment since the connection was established or since a previous call
to transact() for the same UserEnvironment. The values of completion_type are
specified in the X/Open CLI Specification.

The Datastore_CLI PID Operations are:

void assign_PID (in PID_CLI p);
This assign a value for the id attribute of the pid. The first attribute,
datastore_type, must be filled in before calling this operation. If only the first
attribute is filled in, then this operation will fill in the second attribute,
datastore_id, as well.

void assign_PID_relative (in PID_CLI source_pid,
in PID_CLI target_pid);

This assigns values for the attributes of the target_pid based on the values of the
source_pid. The target_pid’s first two attributes, datastore_type and
datastore_id, will be assigned the same values as those of the source_pid. Its id
attribute will be assigned a new value which is based on some relationship with
that of the source_pid. The algorithm defining that relationship is up to the
implementation.

boolean is_identical_PID (in PID_CLI pid_1, in PID_CLI pid_2);
This tests to see if the two pids are identical. In order for the two pids to be
identical, the following conditions must be true:

1. Both pids must be managed by this PDS

2. all three attributes of the pids must be identical individually.

string get_object_type (in PID_CLI p);
This gets the object_type of the pid.

Other Datastore_CLI operations are:

Persistent Object Service: v1.0 Other Datastores March 1995 5-43

5

void register_mapping_schema (in string schema_file);
This registers the mapping schema information contained within the schema_file
with the Datastore_CLI. The mapping schema generally consist of individual
mappings each of which is applicable to a given pair of object_type and
datastore_type.

Cursor execute (in Connection connection,
 in string command);

This executes a command on the Datastore. If there are any DDOs to be returned
as a result, this is done through the Cursor.

5.16 Other Datastores

There are other Datastore interfaces that can be used by PDSs. Some of these
interfaces are not CORBA object interfaces, in that they are not defined in IDL and the
Datastores are not objects.

Some Datastores are simple, such as POSIX files. Others may be databases, and may
use generic interfaces for databases and record files such as SQL, the X/Open CLI
API, IDAPI or ODBC. Some Datastores are tuned to support nested documents or
other specific kinds of objects such as Bento.

Because the Datastore interface is not exposed to object implementations or clients, the
choice of Datastore interface is up to the PDS. So long as the PDS can support its
Protocol using the particular Datastore interface, any implementation of the Datastore
can be used by that PDS. The identification of data within different types of Datastores
is facilitated by the PID, which can be specialized to each Datastore type.

5.17 Standards Conformance

This service is specified in standard OMG IDL.

The Datastore_CLI portion of the Persistent Object Service is consistent with the
X/Open CLI draft standard.

The ODMG-93 PDS Object Protocol incorporates the ODMG-93 specificiation.

5.18 References

The X/Open CLI standard is documented in X/Open Data Management Call Level
Interface (CLI) Draft Preliminary Specification. Reading, UK: X/Open Ltd., 1993.

The IDAPI standard is documented in IDAPI Working Draft. Scotts Valley, CA:
Borland International, August 1993.

The term “ODBC” refers to Microsoft Open Database Connectivity Software
Development Kit, Programmer Reference, Version 1.0. Redmond, WA: Microsoft
Corp., 1992.

5-44 CORBAservices: Common Object Services Specification

5

The term “Bento” refers to Jed Harris and Ira Rubin, The Bento Specification, Revision
1.0d5. Cupertino, CA: Apple Computer, Inc., July 15, 1993,

The term “ODMG-93” refers to R.G.G.Cattell, T.Atwood, J.Duhl, G.Ferran,
M.Loomis, and D.Wade, The Object Database Standard: ODMG-93. San Mateo, CA:
Morgan Kaufmann, 1993.

